Escape in space

Объявление

Игра потихоньку возрождается, оставляйте свои анкеты и вступайте или создавайте сюжеты.

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Escape in space » Технопарк » Досветовые двигатели


Досветовые двигатели

Сообщений 1 страница 2 из 2

1

Класс "R"

Обычные реактивные/ракетные двигатели. Применяются только неразвитыми расами.

Класс "I"

Ионный двигатель — разновидность электрического ракетного двигателя. Его рабочим телом является ионизированный газ (ксенон или цезий). Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (выше 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа, по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии. В комплекте с ним обычно ставится термоядерный реактор.

Источник

Класс "A1"

Аннигиляционный гамма-двигатель:
В качестве рабочего вещества ракеты элементарные частицы, движущиеся со световой или околосветовой скоростью.
Для получения таких частиц можно использовать аннигиляцию материи и антиматерии: электронов и позитронов порождая гамма-излучение, которое используется для создания реактивной тяги (вектор управляется с помощь мощного магнитного поля). Этот процесс происходит главным образом после торможения позитрона в веществе, когда полная энергия двух частиц равна их энергии покоя 1,022 МэВ. На опыте были зарегистрированы пары γ-квантов с энергией по 0,511 МэВ, разлетавшихся в прямо противоположных направлениях от мишени, облучавшейся позитронами. Необходимость возникновения при аннигиляции электрона и позитрона не одного, а как минимум двух γ-квантов вытекает из закона сохранения импульса. Суммарный импульс в системе центра масс позитрона и электрона до процесса превращения равен нулю, но если бы при аннигиляции возникал только один γ-квант, он бы уносил импульс, который не равен нулю в любой системе отсчёта. Известно, что в некоторых аморфных телах, жидкостях и газах позитрон после торможения в значительном числе случаев сразу не аннигилирует, а образует на короткое время связанную с электроном систему, получившую название позитроний. Позитроний в смысле своих химических свойств аналогичен атому водорода, так как представляет собой систему, состоящую из единичных положительного и отрицательного электрических зарядов, и может вступать в химические реакции. Поскольку электрон и позитрон — разные частицы, то в связанном состоянии с наинизшей энергией они могут находиться не только с антипараллельными, но и с параллельными спинами. В первом случае полный спин позитрония s = 0, что соответствует парапозитронию, а во втором — s = 1, что соответствует ортопозитронию. Интересно, что аннигиляция электрон-позитронной пары в составе ортопозитрония не может сопровождаться рождением двух γ-квантов. Два γ-кванта уносят друг относительно друга механические моменты, равные 1, и могут составить полный момент, равный нулю, но не единице. Поэтому аннигиляция в этом случае сопровождается испусканием трёх γ-квантов с суммарной энергией 1,022 МэВ. Образование ортопозитрония в три раза более вероятно, чем парапозитрония, так как отношение статистических весов (2s+1) обоих состояний позитрония 3:1. Однако даже в телах с большим процентом (до 50 %) аннигиляции пары в связанном состоянии, т. е. после образования позитрония, преимущественно появляются два γ-кванта и лишь очень редко три. Дело в том, что время жизни парапозитрония около 10−10 сек, а ортопозитрония — около 10−7 сек. Долгоживущий ортопозитроний, непрерывно взаимодействующий с атомами среды, не успевает аннигилировать с испусканием трёх γ-квантов прежде, чем позитрон, вводящий в его состав, аннигилирует с посторонним электроном в состоянии с антипараллельными спинами и с испусканием двух γ-квантов. Возникающие при аннигиляции остановившегося позитрона два гамма-кванта несут энергию по 511 кэВ и разлетаются в строго противоположных направлениях.

Класс "A2"
Аннигиляционно-пионный двигатель:
В качестве рабочего вещества ракеты элементарные частицы, движущиеся со световой или околосветовой скоростью.
Для получения таких частиц можно использовать аннигиляцию материи и антиматерии: протонов и антипротонов, в результате которой образуются пионы. Экспериментальные исследования показывают, что аннигиляция низкоэнергетических протонов и антипротонов идёт с образованием 4-5 пи-мезонов. При высоких энергиях вероятность аннигиляции протона и антипротона понижается, и сечение этого процесса приближается к сечению процесса столкновения протона с протоном, в согласии с теоремой Померанчука.

Класс "A3"
Аннигиляционно-ядерный двигатель. Антипротоны используются в качестве катализатора комплексной ядерной реакции, включающей процессы деления и синтеза. Одна из подобных схем выглядит так. Капсулу из урана-238 со смесью дейтерия и трития сильно сжимают (например, лазерными импульсами), а потом облучают пучком антипротонов. Антипротоны заставят уран делиться с образованием большого количества нейтронов, которые разогреют начинку капсулы до миллионов градусов и запустят термоядерный синтез гелия. Для полета к границам Солнечной системы хватит нескольких микрограммов (максимум десятков микрограммов) антипротонов.

Источник 1
Источник 2

Класс "M"

Анамезонный двигатель - реактивный двигатель с необычным рабочим телом. Действительно, по хорошо известной формуле Циолковского скорость ракеты равна произведению скорости истечения реактивной струи из двигателя и натурального логарифма отношения масс ракеты до и после разгона. Следовательно, скорость истечения должна быть не меньше, а лучше - равной желаемой скорости корабля. То есть - световой. Таким свойством обладает только "анамезон" - вещество с разрушенными мезонными связями. Анамезон производится на коллайдерах из золота. Правда, взлетая с Земли, такой "кораблик" выхлопом распашет космодром до верхней мантии. Поэтому используются такие двигатели только вдали от обитаемых планет.

(с) И. Ефремов, "Туманность Андромеды"

Класс "P"

Плазменный двигатель (далее ПД) - ракетный двигатель, в котором рабочее тело ускоряется, находясь в состоянии плазмы. Скорости истечения рабочего тела, достижимые в ПД, существенно выше скоростей, предельных для обычных газодинамических (химических или тепловых) двигателей. Увеличение скорости истечения позволяет получать данную тягу при меньшем расходе рабочего тела, что облегчает массу ракетной системы. Плазменные двигатели не следует путать с ионными. ПД не предназначен для вывода грузов на орбиту, он может эффективно работать только в вакууме. Принцип работы: Нейтральный газ, обычно водород или азот (аргон), подается в передний отсек и ионизируется. Образующаяся плазма разогревается электромагнитным полем в центральной камере посредством ионного циклотронного резонансного нагрева. В ходе этого процесса радиоволны передают свою энергию плазме, нагревая ее, подобно тому, как это происходит в микроволновой печи. После нагревания плазма направляется магнитным полем в последний отсек для создания модулированной тяги. Последний отсек - это магнитное сопло, преобразующее энергию плазмы в скорость истечения струи, обеспечивающее при этом защиту конструкции и эффективный выход плазмы из магнитного поля.

Источник

Класс "T1"

Термоядерный ракетный двигатель на основе термоядерного реактора с магнитным удержанием плазмы
Принцип действия и устройство ТЯРД выглядят следующим образом: основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны, т. н. установку термоядерного синтеза схемы «открытая ловушка» (также именуемую «магнитная бутылка» или пробкотрон). «Камера» реактора вовсе не обязательно (и даже нежелательно) должна быть цельно-герметичной, скорее всего она будет представлять собой легкую размеростабильную ферму, несущую катушки магнитной системы. Наиболее перспективной считается схема т. н. «амбиполярного удержания» или «магнитных зеркал» (англ. tandem mirrors), хотя возможны и другие схемы удержания: газодинамические ловушки, центробежное удержание, обращенное магнитное поле (FRC). Длина реакционной «камеры» составляет от 100 до 300 м при диаметре 1-3 м. В камере реактора создаются условия, достаточные для начала термоядерного слияния компонентов выбранной топливной пары (температуры порядка сотен миллионов градусов, факторы критерия Лоусона). Термоядерное топливо — предварительно нагретая плазма из смеси топливных компонентов — подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей (магнитные катушки той или иной конструкции), окружающие активную зону, создают в камере реактора поля большой напряжённости и сложной конфигурации, которые удерживают высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Зона термоядерного «горения» (плазменный факел) формируется по продольной оси реактора. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопло, создавая реактивную тягу.
Следует отметить возможность «многорежимной» работы ТЯРД. Путем впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволяет кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел, например больших планет, где зачастую требуется большая общая тяга двигателя. ТЯРД такой схемы может развивать тягу от нескольких килограмм вплоть до десятков тонн при удельном импульсе от 10 000 с до 4 млн с. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей — порядка 450 с.

Класс "T2"

Инерциальный импульсный термоядерный двигатель. В таком реакторе управляемая термоядерная реакция проходит в импульсном режиме (доли мкс с частотой 1-10Гц), при периодическом обжатии и разогреве микромишеней, содержащих термоядерное топливо. Первоначально предполагалось использовать лазерно-термоядерный двигатель (ЛТЯРД). Главной его частью является реактор, работающий в импульсном режиме. В сферическую камеру реактора подаётся термоядерное топливо (например, дейтерий и тритий) в виде мишеней — сложной конструкции сфер из смеси замороженных топливных компонентов в оболочке диаметром несколько миллиметров. На внешней части камеры находятся мощные — порядка сотен тераватт — лазеры, наносекундный импульс излучения которых через оптически прозрачные окна в стенах камеры попадает на мишень. При этом на поверхности мишени мгновенно создается температура более 100 млн градусов при давлении порядка миллиона атмосфер — условия, достаточные для начала термоядерной реакции. Происходит термоядерный микровзрыв мощностью в несколько сотен килограмм в тротиловом эквиваленте. Частота таких взрывов в камере — порядка 250 в секунду, что требовало подачи топливных мишеней со скоростью более 10км/сек при помощи ЭМ-пушки. Расширяющаяся плазма вытекает из открытой части камеры реактора через сопло соответствующей конструкции, создавая реактивную тягу. В настоящее время уже теоретически и практически доказано, что лазерный метод обжатия/разогрева микромишеней является тупиковым — в том числе практически невозможно построить лазеры такой мощности с достаточным ресурсом. Поэтому в настоящее время для инерциального синтеза используется вариант с ионно-пучковым обжатием/нагревом микромишеней, как более эффективный, компактный и с гораздо большим ресурсом.
И тем не менее, есть мнение, что ТЯРД на инерциально-импульсном принципе слишком громоздок из-за очень больших циркулирующих в нем мощностей, при худшем, чем у ТЯРД с магнитным удержанием, удельном импульсе и тяге, что вызвано импульсно-периодическим типом его действия.

Источник

0

2

Предыдущий пост относится только к расе хомо (людей).
Другие расы могут использовать другие принципы.

0


Вы здесь » Escape in space » Технопарк » Досветовые двигатели